Selasa, 07 Maret 2017

Hardware Inverting Amplifier


Modul 3




*klik teks untuk menuju 


MODUL III
KARAKTERISTIK DIODA & TRANSISTOR

1. Tujuan [kembali]

  1. Menyelidiki Karakteristik static (I-V) diode
  2. Memahami prinsip kerja rangkaian diode pengubah bentuk gelombang (Rangkaian Clipper)
  3. Memahami prinsip kerja rangkaian diode pengubah posisi vertical gelombang (Rangkain Clamper)
  4. Mampu menentukan karakteristik masing-masing transistor
  5. Mampu menentukan hubungan arus transistor terhadap hambatan
2. Alat dan Bahan [kembali]
  1. Power supply
  2. Modul Diode
  3. Modul transistor
  4. Multimeter
  5. Jumper
3. Dasar Teori [kembali]
Dioda
Diode merupakan piranti elektronika yang terbentuk dari suatu penyambung material semikuonduktor tipe-p dan tipe-n. bagian –p (the pside) disebut anoda dan bagian –n disebut katoda.
Disekitar sambungan p-n terdapat daerah deplesi yang menyebabkan electron bebas tidak dapat mengalir bila diode belum dapat tegangan panjar maju (forward biased) yang besarnya melebihi suatu nilai tertentu yang disebut nilai tertentu yang disebut tegangan ambang, tegangan penghalang, atau tegangan diode (VD). Tegangan ini besarnya (secara aproksimasi kedua) adalah sekitar 0,7V (untuk silicon, Si) dan 0,3V (untuk Germanium,Ge). Pada saat dipanjar maju, resistansi diode menjadi kecil (disebut resistansi panjar maju,RF) dan ketika dipanjar mundur (reserve biased) resistansinya menjadi besar (disebut resistansi panjar mundur, RR).

Beberapa tipe diode sengaja dirancang untuk bekerja dalam modus panjar maju (contoh : diode penyearah, LED) sementara beberapa tipe lainnya bekerja dalam modus panjar mundur (contoh : diode zener, fotodioda).

Berikut adalah metode yang digunakan untuk mempelajari rangkaian-rangkaian diode yaitu :
a. Clipper
Rangkaian clipper (pemotong) atau disebut juga rangkain limiter (pembatas) adalah rangkaian diode yang digunakan untuk memotong atau membatasi sebagian bentuk gelombang masukan dan mentransmisikannya pada level diatas atau dibawah level acuan. Level acuan ini bergantung pada nilai tegangan panjar (biased) yang diberikan.

b. Clamper
Rangkaian Clamper adalah rangkaian diode yang berfungsi “menjepit” atau menggeser sinyal pada suatu level tegangan dc tertentu. Rangkaian ini terdiri dari sebuah diode,kapasitor dan elemen resistif. Besar nilai R dan C haruslah dipilih sedemikian sehingga konstanta waktu RC cukup besar untuk menjamin bahwa tegangan pada kapasitor tidak turun secara signifikan selama diode tidak menghantarkan. Ada beberapa tipe clamper positif, clamper negative, dan clamper berpanjar.

c. Pelipat ganda tegangan
Pelipat ganda tegangan (voltage multiplier) adalah rangkaian dengan dua atau lebih diode yang menghasilkan suatu tegangan DC yang besarnya sama dengan tegangan kelipatan tegangan masukan puncak. Catu daya ini digunakan untuk piranti tegangan tinggi DC namun berarus rendah seperti CRT pada TV,Osiloskop dan Komputer.

Transistor
Transistor merupakan komponen elektronika yang terdiri dari tiga lapisan semikonduktor, diantaranya contoh NPN dan PNP. Transistor mempunyai tiga kaki yang disebut dengan Emitor (E), Basis/Base (B) dan Kolektor/collector (C).

Fungsi Transistor antara lain :
1. Sebagai penguat arus, tegangan dan daya (AC dan DC)
2. Sebagai penyearah
3. Sebagai mixer
4. Sebagai osilator
5. Sebagai switch

Transistor yang umum beredar ada beberapa macam diantaranya adalah :
1. Uni Junktion Transistor (UJT)
2. Field Effect Transistor (FET)
3. MOSFET
4. Bipolar Junction Transistor (BJT)

Senin, 06 Maret 2017

Modul 1





Modul I
Gerbang Logika Dasar, Monostable Multivibrator
&
Flip flop
1. Tujuan [kembali]

  1. Mengecek operasi dari gerbang logika dasar 
  2. Memahami konsep gerbang logika dasar, Aljabar Boelean, dan PetaKarnaugh 
  3. Memahami konsep penyederhanaan suatu fungsi logika menggunakan Ajabar Boelean dan Peta Karnaugh 
  4. Memahami prinsip dasar dari Multivibrator 
  5. Mengetahui berbagai macam flip-flop dan pemakaiannya
2. Alat dan Bahan [kembali]

  1.  Panel DL 2203C 
  2.  Panel DL 2203D 
  3.  Panel DL 2203S 
  4.  Jumper
3. Dasar Teori [kembali]


Gerbang Logika Dasar 
1. Gerbang AND
Gambar 1.1 (a) Rangkaian dasar gerbang AND (b) Simbol gerbang AND 

Tabel 1.1 Tabel Kebenaran Logika AND


Bisa dilihat diatas bahwa keluaran akan bernilai 1 jika semua nilai input adalah 1, dan jika salah satu atau lebih input ada yang bernilai nol maka output akan bernilai nol.


2. Gerbang OR
Gambar 1.2 (a) Rangkaian dasar gerbang OR (b) Simbol gerbang OR 
Tabel 1.2 Tabel Kebenaran Logika OR

Bila dilihat dari rangkaian dasarnya maka didapat tabel kebenaran seperti di atas. Pada gerbang logika OR ini bisa dikatakan bahwa jika salah satu atau lebih input bernilai 1 maka output akan bernilai 1 . Nilai output bernilai 0 hanya pada jika nilai semua input bernilai 0. 

3. Inverter ( Gerbang NOT )
Gambar 1.3 (a) Rangkaian dasar gerbang NOT (b) Simbol gerbang NOT Tabel 
1.3 Tabel Kebenaran Logika NOT


Gerbang NOT merupakan gerbang di mana keluarannya akan selalu berlawanan dengan masukannya. Bila pada masukan diberikan tegangan ,maka transistor akan jenuh dan keluaran akan bertegangan nol. Sedangkan bila pada masukannya diberi tegangan tertentu, maka transistor akan cut off, sehingga keluaran akan bertegangan tidak nol. 

 4. Gerbang NOR

(a)

(b)

Gambar 1.4 (a) Rangkaian dasar gerbang NOR (b) Simbol gerbang NOR 
Tabel 1.4 Tabel Kebenaran Logika NOR

Gerbang NOR adalah gerbang OR yang disambung ke inverter. Jadi nilai keluarannya merupakan kebalikan dari gerbang OR. 

5. Gerbang NAND

Gambar 1.5 (a) Rangkaian dasar gerbang NAND (b) Simbol gerbang NAND 
Tabel 1.5 Tabel Kebenaran Logika NAND


Gerbang NAND adalah gerbang AND yang keluarannya disambungkan ke inverter. Dan nilai dari tabel kebenarannya merupakan kebalikan dari tabel kebenaran dari gerbang AND. 

6. Gerbang Exlusive OR (X-OR)

Gambar 1.6 (a) Rangkaian dasar gerbang X-OR (b) Simbol gerbang X-OR
Tabel 1.6 Tabel Kebenaran Logika X-OR
X-OR merupakan gerbang OR yang bersifat exlusif, di mana keluarannya akan nol jika masukannya bernilai sama, dan jika salah satu masukannya berbeda maka keluarannya akan bernilai 1.

Multivibrator
Multivibrator termasuk kedalam rangkaian generatif, artinya suatu rangkaian yang satu atau lebih titik keluarannya dengan sengaja dihubungkan kembali kemasukan untuk memberikan umpan balik.

Multivibrator adalah rangkaian sekuensial atau rangkaian aktif. Rangkaian ini dirancang untuk mempunyai karakteristik jika salah satu rangkaian aktif bersifat menghantar, maka rangkaian aktif yang lain bersifat cut-off atau terpancung. Multivibrator berfungsi untuk menyimpan bilangan biner, mencacah pulsa, menahan atau mengingat pulsa trigger, menyerempakkan operasi aritmatika, dan fungsi lain yang ada dalam sistem digital. Keluarga multivibrator yang akan dibahas adalah rangkaian astabil, rangkaian bistabil dan rangkaian monostabil.

1. Multivibrator Astabil
Multivibrator astabil adalah multivibrator yang tidak mempunyai keadaan stabil. Multivibrator akan berada pada salah satu keadaan selama sesaat dan kemudian berpindah ke keadaan lain selama sesaat pula. Keluaran berosilasi di antara dua keadaan tinggi dan rendah ditentukan oleh parameter rangkaian dan tidak memerlukan pulsa masukan.Oleh karena itulah multivibrator astabil disebut juga multivibator bebas bergerak atau free running multivbrator.Multivibrator ini biasa digunakan sebagai pembangkit pula(clock). Multivibrator astabil juga dapat dibangun menggunakan transistor IC pewaktuan dan resistor.









2. Multivibrator Monostabil

Multivibrator ini hanya mempunyai satu keadaan stabil. Kuasi stabil terjadi bila keadaan stabil dipicu ke keadaan lain. Waktu perubahan dari keadaan stabil dipicu ke keadaan lain. Waktu perubahan dari keadaan tidak stabil ke keadaan stabil (kuasi stabil) ditentukan oleh rangkaian RC.Monostabil juga disebut  ultivibrator satu bidikan (one shot multivibrator).














3.Multivibrator Bistabil
Rangkaian mulvibrator bistabil adalah rangkaian multivibrator yang mempunyai dua keadaan stabil yaitu stabil tinggi atau keadaan logika tinggi dan stabil rendah atau stabil rendah atau keadaan logika rendah. Keluaran bistabil akan berubah dari keadaan tinggi ke keadaan rendah atau sebaliknya jika rangkaian tersebut diberi suatu masukan atau di-triger. Rangkaian bistabil disebut juga flipflop.Ada beberapa macam flip-flop yaitu  S, D, Togle, JK, dan JK master save flipflop.

Modul 4 Triangle Generator






C. Triangle Generator
Prosedur Percobaan
Matikan power supply
2. Hubungkan probe chanel 1 osiloskop dengan V5 dan probe chanel 2 dengan V7
3. Hubungkan jamper sesuai dengan modul dan hidupkan power supply
4. Atur tampilan osiloskop sampai bentuk sinyal terlihat jelas
5. Tekan tombol cursor pada osiloskop dan atur posisi kursor a dan b pada 1  gelombang penuh
6. Catat frekuensi dan waktu 1 gelombang yang didapatkan serta simpan bentuk sinyalnya

1. Hardware [kembali]

2. Rangkaian Simulasi [kembali]

3. Video [kembali]

4. Kondisi [kembali]

5. Link Download [kembali]

Modul 4 Non Inverting Amplifier





DAFTAR ISI
1. Hardware
3. Video
4. Kondisi
5. Link Download

B. Non Inverting Amplifier
Prosedur Percobaan
Input DC
1. Matikan power supply terlebih dahulu
2. Set hambatan RF dengan resistansi sesuai dengan jurnal
3. Biarkan input V1 mengambang
4. Hubungkan jumper J1, dan hidupkan power supply
5. Kemudian atur tegangan input V2 sesuai dengan jurnal dan catat output yang dihasilkan
6. Hubungkan output Vo dengan voltmeter. (RF diatur sesuai jurnal). Aturlah tegangan V2 naik secara perlahan mulai dari -3 volt sambil melihat tegangan outputnya. Pada tegangan input negatif, berapakah
berapakah tegangan output pertama kali berubah?. Tegangan input negatif tersebut diberi nama –Vi max dan ouputnya +V sat.
7. Aturlah tegangan V2 turun secara perlahan mulai dari +3 volt sambil melihat tegangan outputnya. Pada tegangan input positif, berapakah tegangan otput pertama kali berubah? Tegangan input positif tadi diberi
nama Vi max dan ouputnya -V sat.

Input AC
1. Matikan power supply terlebih dahulu
2. Set hambatan RF dengan resistansi sesuai hambatan
3. Lepaskan jumper J1, biarkan V2 mengambang
4. Hubungkan input V1 dengan probe function generator dan set frekuensi gelombang dengan nilai 100 Hz dan nilai tegangan input pada 1 V AC
5. Hubungkan Vo dengan probe chanel 1 osiloskop dan probe chanel 2 dihubungkan ke V1
6. Simpan bentuk gelombang pada osiloskop serta catat nilai tegangan output yang didapat


1. Hardware [kembali]


2. Rangkaian Simulasi [kembali]



3. Video [kembali]


4. Kondisi [kembali]


5. Link Download [kembali]


Simulasi rangkaian Multism Download 
Video Rangkaian Multism  Download

Modul 4 Inverting Amplifier






A. Inverting Amplifier
Prosedur Percobaan
Input DC
1. Matikan power supply terlebih dahulu
2. Set hambatan RF dengan resistansi sesuai dengan jurnal
3. Biarkan input V1 mengambang
4. Hubungkan jumper J1, dan hidupkan power supply
5. Kemudian atur tegangan input V2 sesuai dengan jurnal dan catat output yang dihasilkan
6. Hubungkan output Vo dengan voltmeter. (RF diatur sesuai jurnal). Aturlah tegangan V2 naik secara perlahan mulai dari -3 volt sambil melihat tegangan outputnya. Pada tegangan input negatif, berapakah berapakah tegangan output pertama kali berubah?. Tegangan input negatif tersebut diberi nama –Vi max dan ouputnya +V sat.
7. Aturlah tegangan V2 turun secara perlahan mulai dari +3 volt sambil melihat tegangan outputnya. Pada tegangan input positif, berapakah tegangan output pertama kali berubah? Tegangan input positif tadi diberi

nama Vi max dan ouputnya -V sat.

Input AC
1. Matikan power supply terlebih dahulu
2. Set hambatan RF dengan sesuai dengan jurnal
3. Lepaskan jumper J1, biarkan V2 mengambang
4. Hubungkan input V1 dengan probe function generator dan set frekuensi gelombang dengan nilai 100 Hz dan nilai tegangan input pada 1 V AC
5. Hubungkan Vo dengan probe chanel 1 osiloskop dan probe chanel 2 dihubungkan ke V1
6. Simpan bentuk gelombang pada osiloskop serta catat nilai tegangan output yang didapat

1. Hardware [kembali]

  

1.IC 741



Karakteristik Faktor Penguat atau Gain pada Op-Amp pada umumnya ditentukan oleh Resistor Eksternal yang terhubung diantara Output dan Input pembalik (Inverting Input). Konfigurasi dengan umpan balik negatif (Negative Feedback) ini biasanya disebut dengan Closed-Loop configuration atau Konfigurasi Lingkar Tertutup. Umpan balik negatif ini akan menyebabkan penguatan atau gain menjadi berkurang dan menghasilkan penguatan yang dapat diukur serta dapat dikendalikan. Tujuan pengurangan Gain dari Op-Amp ini adalah untuk menghindari terjadinya Noise yang berlebihan dan juga untuk menghindari respon yang tidak diinginkan. Sedangkan pada Konfigurasi Lingkar Terbuka atau Open-Loop Configuration, besar penguatannya adalah tak terhingga (∞) sehingga besarnya tegangan output hampir atau mendekati tegangan Vcc.

Secara umum, Operational Amplifier (Op-Amp) yang ideal memiliki karakteristik sebagai berikut :
  • Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
  • Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
  • Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
  • Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
  • Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
  • Karakteristik tidak berubah dengan suhu
Pada dasarnya, kondisi Op-Amp ideal hanya merupakan teoritis dan hampir tidak mungkin dicapai dalam kondisi praktis. Namun produsen perangkat Op-Amp selalu berusaha untuk memproduksi Op-Amp yang mendekati kondisi idealnya ini. Oleh karena itu, sebuah Op-Amp yang baik adalah Op-Amp yang memiliki karakteristik yang hampir mendekati kondisi Op-Amp Ideal.


 

2. Rangkaian Simulasi [kembali]

 

3. Video [kembali]

4. Kondisi [kembali]

5. Link Download [kembali]


Video Simulasi Multism